

Climate Smart Agriculture: evidence based technologies and enabling policy frameworks

2014, LIFT Annual Forum, NPT Udaya Sekhar Nagothu Director (International Projects), The Norwegian Institute of Agriculture and Environment, Norway

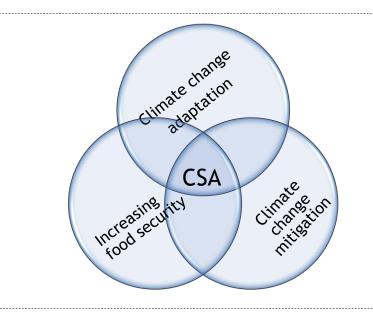
CC and vulnerability in Myanmar

- Droughts- in the dry zone/Sagaing, Mandalay, Magway regions
- Cyclones, storm surges, heavy winds, floods - in the Coastal areas, mainly the Rakhine Coastal State, Ayeyarwady Delta and Mon State.
- High temperatures Flat regions in Central Dry zones/ arid-semiarid belts
- Intensive rains Tanintharyi, Yangon, Rakhine, Ayeyarwady and Mon State/Region and other parts of the country
- Sea level rise coastal regions/Ayeyarwady Delta

Agriculture in Myanmar

- 66% of the population are rural/ 75% of them live on agriculture
- Agriculture 43% of GDP (2011)
- 3 main agro-ecological regions : Central dry (500-1000mm), coastal and hilly with different crops
- Rice (50%), oil seeds, pulses, wheat, maize, millets, root crops, soyabean
- Average farm size- 2.25 ha
- 12.5% area under irrigation

Climate change and adaptation


- Agriculture is listed as First priority level sector (together with EWS and Forests)
- First priority: Reduced CC vulnerability of subsistence farmers through locally relevant technologies, climate-resilient rice varieties, and ex/in-situ conservation of genetic resources. /in Central dry and coastal zone
- Second priority: Increased CC resilience of rural and subsistence farmers in the Dry and Hilly Zones through legume crop diversification and other climateresilient varieties. /in Central dry and hilly zone
- Third priority: Increasing the CC resilience of Dry Zone communities by diversifying and intensifying home-gardens through solar-power technology, high-income fruit crops and CSA approaches. /in Mandalay
- •
- Fourth priority: Reducing the vulnerability of livelihoods in agro-ecological zones to CC through the transfer of a wide range of high-yielding and climate-resilient rice varieties (availability of seeds and varieties). /in Irrigated and rainfed lowlands and hill zone with rice

(Ref:Myanmar's National Adaptation Programme of Action (NAPA) to CC, 2002)

Climate Smart Agriculture-Concept

- Climate-smart agriculture (CSA) is defined as an approach that "sustainably increases productivity, enhances resilience (adaptation), reduces GHGs (mitigation), carbon sequestration and increases food security and development goals" (FAO, 2010).
- Key words: Innovation, Knowledge, technology
- What is new with CSA?
- The approach? to exploit the adaptation and mitigation potential
- Some prefer the term

"Climate resilient"

Contributing to productivity

- CSA technologies should improve resource use efficiency/ and higher productivity and yields.
- Measures that contribute to slow down adverse effects of climate change.
- Examples-

-crop varieties (that are drought resistant, and high yielding)

- improved cropping systems and animal husbandry

- cereal-legume based cropping systems

Contributing to Adaptation

- Any agricultural practice that reduces exposure, sensitivity or vulnerability to climate variability or change is climate-smart.
- these practises enhance farmers' ability to cope with extremes weather events
- Examples-

-shifting sowing windows, -zero tillage, mulching, -conservation agriculture, -drought-tolerant crops/ improved crop varieties

-crop insurances, weather forecasts,

Contributing to mitigation

- CSA technologies have a greater capacity to sequester carbon from the atmosphere
- -Examples- Improved soil management, green manuring, agroforestry, minimum tillage
- technologies/practices that help mitigate CH₄ and N₂O emissions
- Examples- SRI and AWD (Rice cropping systems), soil management (Biochar), biogas plants, reduced conversion of forests and rangeland management

Climate-resilient rice varieties

- Varieties suited for different agro-ecological zones
- Resistant to drought , salinity, waterlogged conditions
- Collecting genetic resources
 from different locations
- Sharing genetic resources
- Farmer participatory research/field trials
- Education, agricultural extension and training for up/ out scaling technologies
- Investments and policy support for research and seed production
- Quality and high yielding seeds to be made available to farmers

Alternate Wetting and Drying in Rice

- Rice yields under AWD increased by 14% and 55% during winter and monsoon rice crops, respectively, compared to the Normal Irrigation (NI)
- Water productivity, number of tillers and panicles were higher in AWD than NI cultivation
- Farmers profit increased on an average by about 22% in AWD compared to NI
- To introduce AWD as climate-smart rice farming system, system level irrigation water control through close coordination among farmers, irrigation authorities and local governments is essential
- requires more multi-location cluster trials (including GHG emissions) with farmer participation
- Training and capacity building of farmers

(Results based on 5-6 seasons farmer field trials in India)

System of Rice Intensification

- Proper land levelling
- Water management for intermittent irrigation
- 12-15 day old seedlings for planting
- Plant single seedling /hill with a spacing of approx. 20-25x20-25 cm
- Proper weed management using conoweeder
- 22% increase in yield and 25% water saving compared to paddy
- Less methane emissions (8 mg/m2/hr) in SRI compared to paddy rice system (13 mg/m2/hr).
- Challenges: Labour intensive; Nitrous oxide emissio

Direct seeding of rice

- Direct seed drilling above 2.5cm depth
- Weed management with selective herbicides and manual weeding
- Lower cultivation costs due to reduced labour cost
- 50% reduction in seed rate (12-18 kg/acre)
- Reduced water usage by 20-25%
- More productive tillers and panicles
- Less incidence of pests and diseases
- Early harvest (7-10 days)
- DSR now in 100,000 ha in the project area

Legume based cropping systems

- Promote legumes- chick pea, cow pea and groundnut etc
- Suitable for hilly and dry zones and water scarcity
- Addresses the nutritional security
- Provide good quality seeds and varieties for different zones and weather/ exploit genetic diversity
- More farmer participation trials and training
- Cereal-legume crop rotations

Small-scale water conservation

- Small-scale, cost-effective and rapidly installed earth fill dams
- It can provide supplemental irrigation during droughts
- Increases productivity and income
- Soil/water conservation
- Groundwater recharging

Crop pest and disease risk assessment and management

- Weather data, numerical weather forecasts
- Biological knowledge and observations from field
- Forecasting models for plant pests/diseases
- Early warnings based on damage thresholds and recommendations to farmer

Post-harvest processing and storage

Drying and storage-

- low quality grains,
- wastage, diseases.
- Not climate resilient and it is weather dependent

Mechanical heated-air seed dryer systems.

- Even drying/less labour
- Increases climate-resilience of harvested seed/grains.
- Design /production locally/ technical capacity/ awareness to use
- Improved storage bins

CSA-enabling frameworks

- Institutional support
- Research, extension
- Enabling policies for scaling up/out scaling
- Financial support and investments
- Small holder friendly
- Gender consideration

Farmer participatory learning

- Farmer participatory field trials
- Scientists-farmer link
- Farmer to farmer learning/ Village Knowledge Centres
- Simultaneous capacity building and training of farmers/women
- Developing upscaling/ outscaling frameworks
- Building CSA knowledge base /local context

Challenges and future directions

Main challenges

- Government prioirty?
- Farmer willingness to adopt new practises
- Low private sector investments in CSA
- Lack of evidence based CSA knowledge base
- Linkage to markets
- Lack of innovation

Future Directions

- Mobilize investments
- Share CSA knowledge (between regions, agencies)
- Share genetic resources
- More field based trials and testing
- Increase capacity and awareness of scientists and farmers