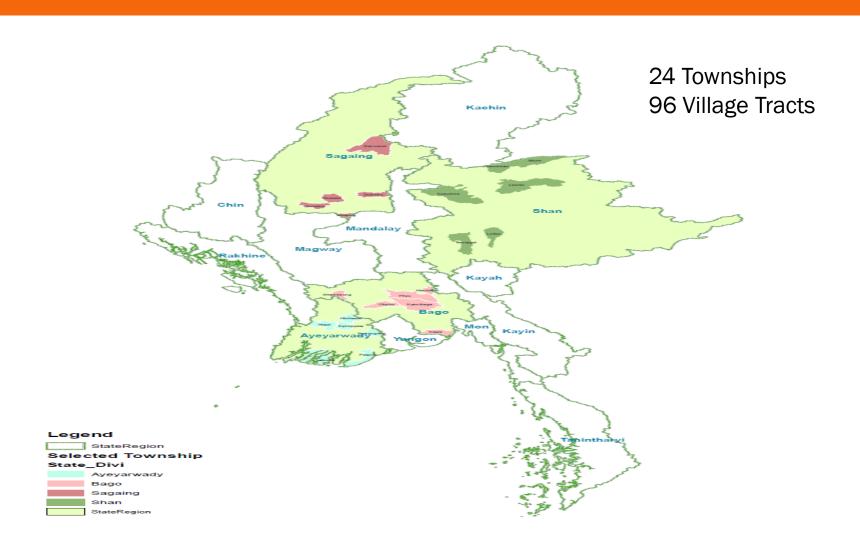
Myanmar: Analysis of Farm Production Economics: Preliminary Results for the 2013 Monsoon Season

Sergiy Zorya
Senior Agricultural Economist
The World Bank Group

Why Do We Do This Work?

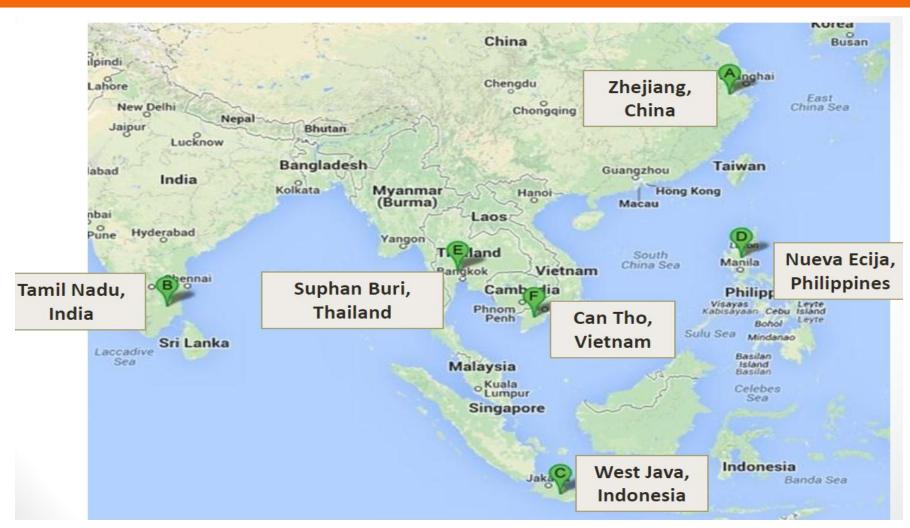
- Agricultural statistics and data are of poor quality in Myanmar
- Data is particularly weak on farm production economics:
 - Farm production costs, farm profitability, and returns to farm labor
 - Farm technologies (seeds, fertilizers, pesticides, machines, labor)
 - Differences by region, agro-ecological zone, and farm sizes
 - Dynamics between labor (own vs. hired) and capital (mechanization)
- Comparisons with other countries are limited to FAOSTAT and USDA
- All this reduces the efficiency and effectiveness of the agricultural policy in Myanmar


The Multi-Agency Project

- LIFT and the World Bank have initiated the project
- For the collection of primary data we partner with Myanmar Marketing Research Development (MMRD)
- Food and Agriculture Organization (FAO) and International Rice Research Institute (IRRI) help with design of the survey and quality control
- The AgriFood Consulting International carries out analysis of the primary data

The Survey

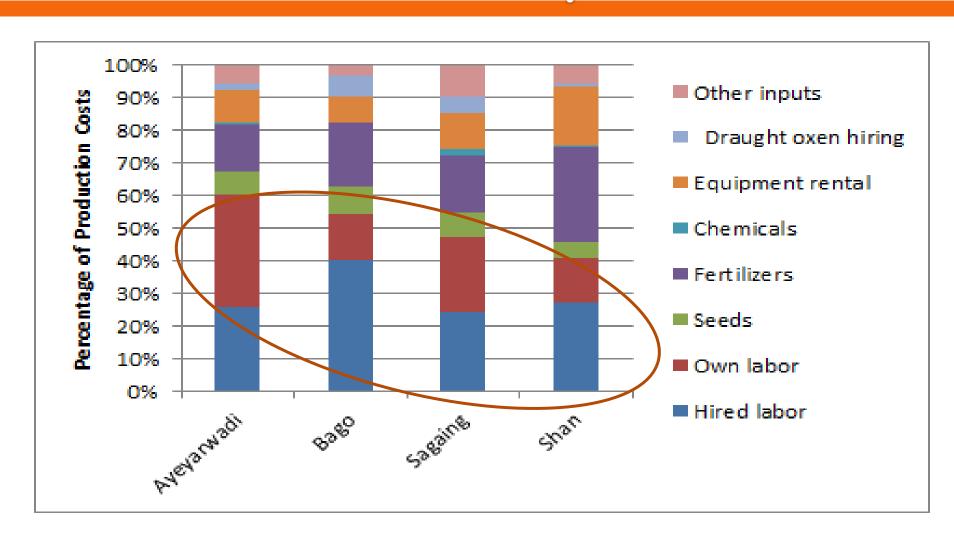
- 50 Total sample is 1,728 farm households
- Ayeyarwady (484 HHs), Bago (380), and Sagaing (501) Regions, and Shan (363) State
- Two rounds of the survey: monsoon (Nov-Dec 2013) and dry season (Apr-Jun 2014)
- Agro-ecological zones:
 - Ayeyarwady [salt water, brackish water, fresh water]
 - Bago [west alluvial, east alluvial, east/west flooded land]
 - Sagaing [irrigated, dry land, river area]
 - Shan [southern interior, northern interior, border area]


The Survey Townships

The Survey Focus

- This survey is not a farm census and is not representative to the whole country
- At this point it does not allow studying dynamics/changes
- 50 The survey focuses on main village tracts
- These main village tracts are likely to be better-off performers:
 - They are most economic active, centers for government services and trade, and usually long established in areas with better soils and production environment
- More remote village tracts are likely to generate lower incomes and use more traditional technologies
- The focus on "main" villages allows better international comparisons

Example: International Study of the Phil Rice

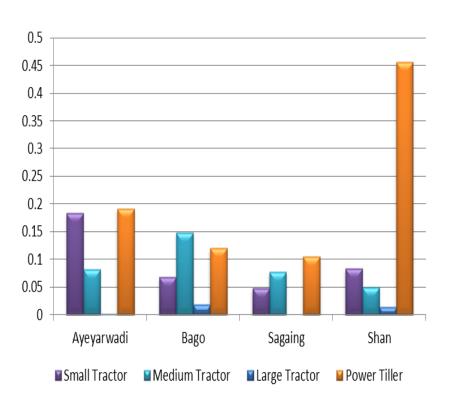

The Survey Sections

- Demography
- Assets and access to services
- Farm land (size, land use rights, taxes, rents, land use)
- Production of rice
- Determinants of rice productivity
- Consumption of rice
- Production of other crops: maize, groundnuts, sesame, sunflower, beans and pulses

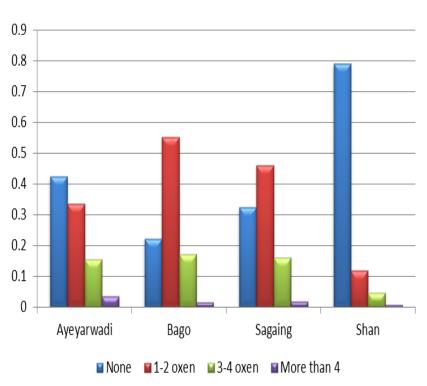

Selected Preliminary Results

- 1. Monsoon Rice Production Technology
- Labor Dynamics
- 3. Monsoon Paddy Yields
- 4. Monsoon Rice Gross Margins
- 5. Differences by Technology and Farm Size

Message #1: Monsoon Rice Production in Myanmar is Labor Intensive, Mostly Traditional

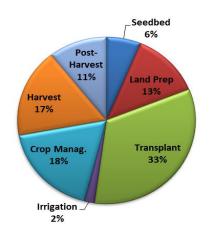


Competitors Use Less Labor-Intensive Technologies

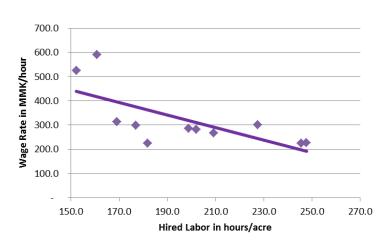


Agricultural Mechanization is just Starting in Myanmar

Possession of Agricultural Machinery


Possession of Draught Oxen

Message #2: Farm Labor in Myanmar is Increasingly in Deficit but Still Affordable Underpinning Traditional Technologies


Rice production labor requirement:

- 355 hours/acre
- 42 days/acre
- 104 days/ha

Average wage of hired labor: \$2.4/day

- \$1.83/day in Salt Water Area, Ayeyarwady
- \$4.8/day in Border Area, Shan

Labor is More Expensive in Other Countries

Labor Use for Rice Production

Agricultural Wages

	Days/Ha
Thailand	10
China	11
Vietnam	23
Cambodia	48
Philippines	69
India	78
Myanmar	104

	\$/day
Thailand	16.5
China	19.3
Vietnam	8.9
Cambodia	4.5
Philippines	7.6
India	4.2
Myanmar	2.4

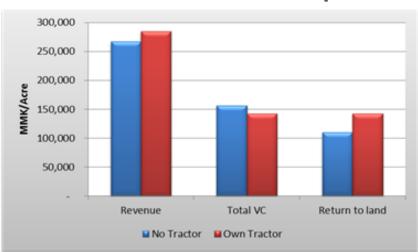
Message #3: Monsoon Paddy Yields in Myanmar are Low

Cultivated Areas and Yields

		<u>Ha</u>	Tons/ha
\circ	Ayeyarwadi:	2.13	2.89
\circ	Bago:	2.19	3.11
\circ	Sagaing:	0.84	2.86
\circ	Shan:	0.99	4.30
\circ	Average:	1.71	3.14

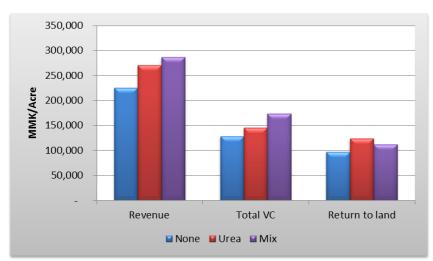
- Smaller farms have higher yields (tons/ha):
 - Small farms (up to 1 ha): 3.11
 - Medium farms (from 1.01 ha to 2 ha): 2.86
 - Large farms (larger than 2 ha): 2.89

Rice Yields: International Comparisons


	Average (USDA) 2013/14-2014/15	Better Farms (Surveys)
Thailand	2.8	5.7
China	6.7	6.6
Vietnam	5.8	6.8
Philippines	3.9	6.3
India	3.6	4.7
Myanmar	2.7	3.1

Message #4: Monsoon Rice Gross Margins Vary Significantly

	Gross Margin, \$/ha	Rice Area, Ha	Gross Margin per Farm, \$
Dry Land/Sagaing	33	1.09	36
Salt Water/Ayeyarwaddy	202	2.49	503
Irrigated Tract/Sagaing	206	1.13	234
East Alluvial/Bago	392	2.33	913
Fresh Water/Ayeyarwaddy	241	2.22	536
River Area/Sagaing	271	0.41	110
Brackish Water/Ayeyarwaddy	321	1.85	595
West Alluvial/Bago	336	1.82	612
North Interior/Shan	380	1.09	416
South Interior/Shan	537	1.50	805


Message #5: Farmers Using Modern Technologies Generate Higher Returns to Labor but Not Always to Land

Tractor Ownership

Use of Fertilizers

Message #6: Smaller Farms Achieve Higher Rice Yields but Lower Returns to Land and Labor

	Average size, ha	Paddy yield, tons/ha	Gross margin (return to land), \$/ha	Return to own labor, \$/day
Small	0.55	3.11	208	2.92
Medium	1.53	2.86	252	5.84
Large	3.50	2.89	316	9.45

Next Steps

- Finalize the analysis of this first and second surveys (January 2015)
 - Develop more farm typologies (by size, technology, etc.)
 - Add more data on international comparisons
- Prepare the consolidated report (March 2015)
- Make the report and the data available to the public (May 2015)